

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

European Technical Assessment

ETA-09/0317 of 18/07/2014

English translation prepared by CSTB - Original version in French language

General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011:

Nom commercial Trade name	POWERS THROUGHBOLT PTB-ETA1-PRO
Famille de produit Product family	Cheville métallique à expansion par vissage à couple contrôlé, de fixation dans le béton fissuré : diamètres M8, M10, M12, M16 et M20 Torque-controlled expansion anchor for use in cracked concrete: sizes M8, M10, M12, M16 and M20
Titulaire <i>Manufacturer</i>	Powers Fasteners Europe Stanley Black&Decker Deutschland GmbH European Anchor Development Center Black-&-Decker Str. 40 65510 Idstein Germany
Usine de fabrication e Manufacturing plants	Plant 1 & 2
Cette evaluation contient: This Assessment contains	18 pages incluant 15 annexes qui font partie intégrante de cette évaluation 18 pages including 15 annexes which form an integral part of this assessment
Base de l'ETE Basis of ETA	ETAG 001, Version April 2013, utilisée en tant que EAD ETAG 001, Edition April 2013 used as EAD
Cette evaluation remplace: This Assessment replaces	ATE 09/0317 valide du 03/06/2013 au 03/06/2018 ETA-09/0317 with validity from 03/06/2013 to 03/06/2018

1 Technical description of the product

The Powers PTB-ETA1-PRO anchor is an anchor made of zinc electroplated steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The illustration and the description of the product are given in Annexes A.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (ER 1)

Essential characteristic	Performance
Characteristic tension resistance acc. ETAG001, Annex C	See Annex C 1
Characteristic shear resistance acc. ETAG001, Annex C	See Annex C 2
Characteristic tension resistance acc. CEN/TS 1992-4	See Annex C 5
Characteristic shear resistance acc. CEN/TS 1992-4	See Annex C 6
Characteristic resistance under seismic action Cat. 1 acc. TR045	See Annex C 9
Characteristic resistance under seismic action Cat. 2 acc. TR045	See Annex C 10
Displacements	See Annex C 11

3.2 Safety in case of fire (ER 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic tension resistance under fire acc. ETAG001, Annex C	See Annex C 3
Characteristic shear resistance under fire acc. ETAG001, Annex C	See Annex C 4
Characteristic tension resistance under fire acc. CEN/TS 1992-4	See Annex C 7
Characteristic shear resistance under fire acc. CEN/TS 1992-4	See Annex C 8

3.3 Hygiene, health and the environment (ER 3)

Regarding dangerous substances contained in this European technical approval, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (ER 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Protection against noise (ER 5)

Not relevant.

3.6 Energy economy and heat retention (ER 6)

Not relevant.

3.7 General aspects relating to fitness for use

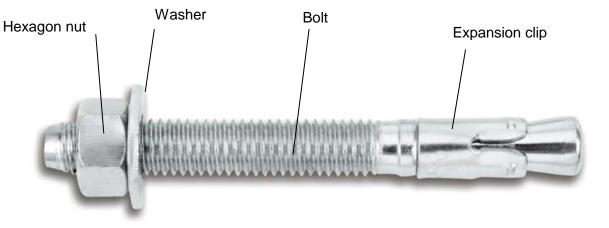
Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	ı	1

5 Technical details necessary for the implementation of the AVCP system

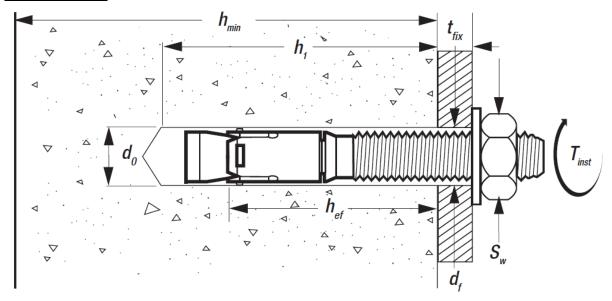

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La Vallée on 18-07-2014 by Charles Baloche Directeur technique

The original French version is signed

Hex head version:

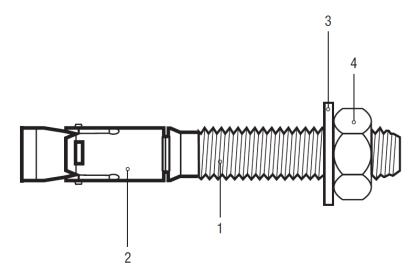

Marking:

on the bolt, PTB1 (product name)

followed by X / Y where

X = nominal diameter,Y = total length of the anchor

Anchor in use:


POWERS	THROU	JGHBOL1	Г РТВ-ЕТА	.1-PRO
--------	-------	---------	-----------	--------

Product description

Installation condition

Annex A1

Different parts of the anchor:

Table 1: Materials

Part	Designation	Material	Protection		
1	Bolt M8 to M20	Coldformed steel, grade C-1035	Zinc plated 5 μm		
2	Expansion din	M8 SS430	-		
2 Expansion clip		M10 to M20 Carbon steel	Zinc plated		
3	Washer	DIN 125 or EN ISO 7089	Zinc plated		
3	vvasner	DIN 9021 or DIN EN ISO 7093	Zinc plated		
4 Hovegonel nut		DIN 934 or DIN EN ISO 4032,	Zinc plated		
4	Hexagonal nut	Grade 8 acc. to DIN EN ISO 20898-2	Ziric piated		

POWERS THROUGHBOLT PTB-ETA1-PRO	
Product descripion	Annex A2
Material	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Seismic loads (category C1 for M8 to M16, category C2 for M12).
- Fire.

Base materials:

- Cracked concrete and non-cracked concrete.
- Reinforced or unreinforced normal weight concrete of strength classes C20/25 at least to C50/60 at most according to ENV 206: 2000-12.

Use conditions (Environmental conditions):

• Structures subject to dry internal conditions.

Design:

- The anchorages are designed in accordance with the ETAG001 Annex C "Design Method for Anchorages" or CEN/TS 1992-4-4 " Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- For seismic application the anchorages are designed in accordance with TR045 "Design of Metal Anchors For Use In Concrete Under Seismic Actions".
- For application with resistance under fire exposure the anchorages are designed in accordance with method given in TR020 "Evaluation of Anchorage in Concrete concerning Resistance to Fire".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of specified torque moment using a calibrated torque wrench.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

POWERS THROUGHBOLT PTB-ETA1-PRO	
Intended Use Specifications	Annex B1

			PTB-ETA1-PRO				
Table 2: Anchor dimens	M8	M10	M12	M16	M20		
Length cone bolt Minim	um	[mm]	60	80	85	115	155
Maxim	ium	[mm]	240	220	220	220	220
Fixture thickness Minim		[mm]	1	1	1	1	1
Maxim	um t _{fix}	[mm]	185	140	125	110	65
Diameter cone neck		[mm]	5,5	7,3	8,7	11,7	14,6
Length expansion clip I _{clip}		[mm]	14	18	22	26	30
Width torque wrench	SW	[mm]	13	17	19	24	30

			PTB-ETA1-PRO					
Table 3: Installation data		M8	M10	M12	M16	M20		
Drill hole diameter	d _{cut}	[mm]	≤ 8,45	≤ 10,45	≤ 12,5	≤ 16,5	≤ 20,5	
Drill hole depth for h _{ef,min}	h _{1,min}	[mm]	55	75	75	100	150	
Drill hole depth for h _{ef,max}	h _{1,max}	[mm]	ı	-	95	120	1	
Minimum embedment depth	$\mathbf{h}_{ef,min}$	[mm]	40	60	60	80	110	
Maximum embedment depth	$h_{\text{ef,max}}$	[mm]	ı	-	80	100	-	
Installation torque	T _{inst}	[Nm]	25	45	70	120	200	
Diameter through hole fixture	d _f	[mm]	9	12	14	18	22	
Min. member thickness h _{ef,min}	h _{min,1}	[mm]	100	120	120	160	250	
Min. member thickness h _{ef,max}	h _{min,2}	[mm]	-	-	160	200	-	
		1		T		T		
Minimum edge distance	C _{min}	[mm]	55	60	65	85	95	
Corresponding spacing	for s ≥	[mm]	120	150	190	160	240	
Minimum spacing	S _{min}	[mm]	50	55	60	70	95	
Corresponding edge distance	for c ≥	[mm]	90	90	100	130	240	

POWERS THROUGHBOLT PTB-ETA1-PRO	
Intended Use Installation parameters	Annex B2

Table 4: Characteristic values for tension loads in case of static and quasi static loading for design design method A acc. ETAG001, Annex C

					PTB-ETA1-PRO				
					M8	M10	M12	M16	M20
Steel failure			•						-
Characteristic resistance			$N_{Rk,s}$	[kN]	22	31	43	79	95
Partial safety factor			γ _{Ms}	[-]			1,5		
Pullout failure									
	Characteris	tic resistar	nce in craci	ked con	crete C2	20/25			
Minimum embedment depth			$N_{Rk,p}$	[kN]	4	9	12	25	20
Maximum embedment depth			$N_{Rk,p}$	[kN]	-	-	12	25	-
Partial safety factor for cracke	ed concrete		γ _{Mp} ¹⁾	[-]			1,8 2)		
Ch	aracteristic	resistance	e in non-cra	acked c	oncrete	C20/25			
Minimum embedment depth			$N_{Rk,p}$	[kN]	7,5	16	_4)	30	50
Maximum embedment depth			$N_{Rk,p}$	[kN]	-	-	30	- ⁴⁾	-
Partial safety factor for non-ci	racked cond	crete	$\gamma_{Mp}^{-1)}$	[-]		1	,5 ³⁾		1,8 ²⁾
	concrete C30/37 concrete C40/50 concrete C50/60			[-]	1,22				
Increasing factor N _{RK} for			Ψ_{c}	[-]	1,41				
				[-]			1,55		
Concrete cone failure and s	plitting fai	lure							
Effective embedment depth	Minimu	ım	h _{ef,min}	[mm]	40	60	60	80	110
Lifective embedment deptil	Maxim	num	h _{ef,max}	[mm]	-	-	80	100	-
Partial safety factor in —	cracked concrete		$\gamma_{\text{Mc}} = \gamma_{\text{Msp}}$	[-]			1,8 ²⁾		
n artial salety factor in	on-cracked	concrete	1)			1,5 ³⁾ 1			1,8 2)
	concrete (C30/37		[-]			1,22		
Increasing factor N _{RK} for	concrete (C40/50	Ψ_{c}	[-]		1,41			
	concrete (C50/60		[-]			1,55		
	concrete	(h _{ef,min})	S _{cr,N,min}	[mm]	120	180	180	240	330
Characteristic spacing	cone	$(\boldsymbol{h}_{ef,max})$	S _{cr,N,max}	[mm]	-	-	240	300	-
for failure by	splitting	(h _{ef,min})	S _{cr,sp,min}	[mm]	200	300	300	400	550
	opiitiiig	$(h_{ef,max})$	S _{cr,sp,max}	[mm]	-	-	400	500	-
	concrete	(h _{ef,min})	C _{cr,N,min}	[mm]	60	90	90	120	165
Characteristic edge distance	cone	(h _{ef,max})	C _{cr,N,max}	[mm]	-	-	120	150	-
for failure by	splitting	(h _{ef,min})	C _{cr,sp,min}	[mm]	100	150	150	200	275
	opig	(h _{ef,max})	C _{cr,sp,max}	[mm]	-	-	200	250	-

¹⁾ In absence of other national regulations

POWERS THROUGHBOLT PTB-ETA1-PRO Design according to ETAG001, Annex C Characteristic resistance under tension loads Annex C1

²⁾ The value contains an installation safety factor γ_2 = 1,2

³⁾ The value contains an installation safety factor γ_2 = 1,0

⁴⁾ Pullout failure not decisive. Use Equation acc. to ETAG 001, Annex C, for concrete cone failure.

Table 5: Characteristic values for shear loads in case of static and quasi static loading for design design method A acc. ETAG001, Annex C

		_						
					PTB	-ETA1-F	PRO	
				М8	M10	M12	M16	M20
Steel failure without lever arm								
Characteristic resistance		$V_{Rk,s}$	[kN]	10	15,5	21	37	54
Partial safety factor		γ _{Ms} ¹⁾	[-]			1,25		
Steel failure with lever arm		<u>-</u>	-					
Characteristic bending resistance		$M^0_{Rk,s}$	[Nm]	23	45	77	194	380
Partial safety factor		$\gamma_{Ms}^{1)}$	[-]			1,25		
Concrete pry-out failure								
Factor in Eq. (5.6) of ETAG Annex C,	§ 5.2.3.3	k	[-]	1	2	2	2	2
Partial safety factor		γ _{Mc} ¹⁾	[-]			1,5		
Concrete edge failure								
Effective length under cheer lending	(h _{ef,min})	I _{f,min}	[mm]	40	60	60	80	110
Effective length under shear loading	(h _{ef,max})	I _{f,max}	[mm]	-	-	80	100	-
Outside diameter of anchor		d _{nom}	[mm]	8	10	12	16	20
Partial safety factor		γ _{Mc} ¹⁾	[-]			1,5		

¹⁾ In absence of other national regulations

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design according to ETAG001, Annex C Characteristic resistance under shear loads	Annex C2

Table 6: Characteristic tension resistance in cracked and non-cracked concrete under fire exposure ¹⁾ for design method A acc. ETAG001, Annex C

			PTB-ETA1-PRO				
							M20
Steel failure							
	R30 N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1	4,9
Characteristic resistance	R60 N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4	3,7
Characteristic resistance	R90 N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0	3,.2
	R120 N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6	2,5

Pullout failure (cracked and non-cracked	Pullout failure (cracked and non-cracked concrete)										
Characteristic resistance in concrete ≥ C20/25											
	R30 N _{Rk,p,fi}	[kN]	1	2,3	3	6,3	5,0				
Minimum embedment depth	R60 N _{Rk,p,fi}	[kN]	1	2,3	3	6,3	5,0				
	R90 N _{Rk,p,fi}	[kN]	1	2,3	3	6,3	5,0				
	R120 N _{Rk,p,fi}	[kN]	0,8	1,8	2,4	5	4,0				
	R30 N _{Rk,p,fi}	[kN]	-	-	3	6,3	-				
Maximum embedment depth	R60 N _{Rk,p,fi}	[kN]	-	-	3	6,3	-				
maximum embedment depth	R90 N _{Rk,p,fi}	[kN]	1	-	3	6,3	-				
	R120 N _{Rk,p,fi}	[kN]	-	-	2,4	5	-				

Concrete cone and splitting failure ²⁾ (cracked and uncracked concrete)										
Characteristic resistance in concrete ≥ C20/25										
Minimum embedment depth		R30 N ⁰ _{Rk,c,fi}	[kN]	1,8	5	3	10,3	22,8		
		R60 N ⁰ _{Rk,c,fi}	[kN]	1,8	5	3	10,3	22,8		
		$R90 N_{Rk c fi}^{0}$	[kN]	1,8	5	3	10,3	22,8		
	$R120 N_{Rk,c,fi}^{0}$	[kN]	1,5	4	2,4	8,2	18,3			
	R30 N ⁰ _{Rk,c,fi}	[kN]	-		10,3	18	-			
Maximum embedment depth		R60 N ⁰ _{Rk,c,fi}	[kN]	-	-	10,3	18	-		
waxiiiaiii embeament depin		R90 N ⁰ _{Rk,c,fi}	[kN]	-	-	10,3	18	-		
		R120 N ⁰ _{Rk,c,fi}	[kN]	-	-	8,2	14,4	-		
Characteristic angeing for	(h _{ef,min})	S _{cr,N,min,fi}	[mm]	160	240	240	320	440		
Characteristic spacing for	$(h_{ef,max})$	S _{cr,N,max,fi}	[mm]	-	-	320	400	-		
	(h _{ef,min})	C _{cr,N,min,fi}	[mm]	80	120	120	160	220		
Characteristic edge distance for	(h _{ef,max})	C _{cr,N,max,fi}	[mm]	-	-	160	200	-		

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.1. TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to c_{min} ≥ 300 mm and ≥ 2 · h_{ef}.

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design according to ETAG001, Annex C Characteristic tension resistance under fire exposure	Annex C3

²⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Table 7: Characteristic shear resistance in cracked and non-cracked concrete under fire exposure ¹⁾ for design method A acc. ETAG001, Annex C

			PTB-ETA1-PRO				
			M8	M10	M12	M16	M20
Steel failure without lever arm							
	R30 V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1	4,9
Characteristic resistance	R60 V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4	3,7
Characteristic resistance	R90 V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0	3,2
	R120 V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6	2,5

Steel failure with lever arm									
Characteristic bending resistance	$R30 \mathrm{M}^{0}_{\mathrm{Rk,s,fi}}$	[Nm]	0,37	1,1	2,6	6,7	13,0		
	R60 M ⁰ _{Rk,s,fi}	[Nm]	0,34	1,0	2,0	5,0	9,7		
	R90 M ⁰ _{Rk,s,fi}	[Nm]	0,26	0,7	1,7	4,3	8,4		
	$R120 M^{0}_{Rk,s,fi}$	[Nm]	0,19	0,6	1,3	3,3	6,5		

Concrete pry-out failure									
Factor in equation (5.6) of ETAG Annex C, § 5.2.3	[-]	1	2	2	2	2			
	R30 V _{Rk,cp,fi}		[kN]	1,8	10	10	20,6	45,6	
Characteristic resistance for $h_{ ext{ef,min}}$	R60 V _{Rk,cp,fi}		[kN]	1,8	10	10	20,6	45,6	
	R90 V _{Rk,cp,fi}		[kN]	1,8	10	10	20,6	45,6	
	R120 V _{Rk,cp,fi}		[kN]	1,5	8	8	16,5	36,6	
	R	$30 V_{Rk,cp,fi}$	[kN]	-	1	20,6	36	-	
Ob ana stanistic marietament for b	R	60 V _{Rk,cp,fi}	[kN]	-	-	20,6	36	-	
Characteristic resistance for $h_{ef,max}$	R	90 V _{Rk,cp,fi}	[kN]	-	-	20,6	36	-	
	R1	20 V _{Rk,cp,fi}	[kN]	-	-	16,5	28,8	-	

Concrete edge failure									
Effective length and a change length of	(h _{ef,min})	$I_{f,min}$	[mm]	40	60	60	80	110	
Effective length under shear loading	(h _{ef,max})	$I_{f,max}$	[mm]	-	-	80	100	-	
Outside diameter of anchor		d _{nom}	[mm]	8	10	12	16	20	

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.2.

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and $\ge 2 \cdot h_{ef}$.

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design according to ETAG001, Annex C Characteristic shear resistance under fire exposure	Annex C4

Table 8: Characteristic values for tension loads in case of static and quasi static loading for design design method A acc. CEN/TS 1992-4

						PTE	B-ETA1-	PRO					
					M8	M10	M12	M16	M20				
Steel failure													
Characteristic resistance			$N_{Rk,s}$	[kN]	22	31	43	79	95				
Partial safety factor			γ _{Ms} ¹⁾	[-]			1,5						
Pullout failure				-			-	-					
	Characteris	tic resistar	ice in craci	ked con	crete C2	20/25							
Minimum embedment depth			$N_{Rk,p}$	[kN]	4	9	12	25	20				
Maximum embedment depth	1		$N_{Rk,p}$	[kN]	-	-	12	25	-				
Partial safety factor cracked	concrete		γ _{Mp} ¹⁾	[-]			1,8 2)						
Ch	aracteristic	resistance	e in non-cra	acked c	oncrete	C20/25							
Minimum embedment depth			$N_{Rk,p}$	[kN]	7,5	16	- ⁴⁾	30	50				
Maximum embedment depth			$N_{Rk,p}$	[kN]	-	-	30 5 ³⁾	- ⁴⁾	-				
Partial safety factor non-cracked concrete			$\gamma_{Mp}^{-1)}$	[-]		1,8 2)							
concrete C30/37				[-]			1,22						
Increasing factor N _{RK} for	concrete (Ψ_{c}	[-]	1,41								
	concrete (C50/60		[-]			1,55	_					
Concrete cone failure and s	splitting fai	lure											
Effective embedment depth	Minimu	ım	h _{ef,min}	[mm]	40	60	60	80	110				
Encouve embeament deput	Maxim	num	h _{ef,max}	[mm]	-	-	80	100	-				
Factor in cracked concrete			k _{cr}	[-]			7,2						
Factor in non-cracked concre			k _{ucr}	[-]			10,1						
Partial safety factor for —	cracked co		$\gamma_{\text{Mc}} = \gamma_{\text{Msp}}$	[-]			1,8 ²⁾		D 0)				
n	on-cracked		')	[-]			,5 ³⁾		1,8 2)				
	concrete		S _{cr,N,min}	[mm]	120	180	180	240	330				
Characteristic spacing	cone	(h _{ef,max})	S _{cr,N,max}	[mm]	-	-	240	300	-				
for failure by	splitting	(h _{ef,min})	S _{cr,sp,min}	[mm]	200	300	300	400	550				
		(h _{ef,max})	S _{cr,sp,max}	[mm]	-	-	400	500	-				
	concrete	(h _{ef,min})	C _{cr,N,min}	[mm]	60	90	90	120	165				
Characteristic edge distance	cone	$(h_{ef,max})$	C _{cr,N,max}	[mm]	-	-	120	150	-				
for failure by	splitting (/	(h _{ef,min})	C _{cr,sp,min}	[mm]	100	150	150	200	275				
	- Splitting	(h _{ef,max})	C _{cr,sp,max}	[mm]	-	-	200	250	-				

¹⁾ In absence of other national regulations

POWERS THROUGHBOLT PTB-ETA1-PRO Design according to CEN/TS 1992-4 Characteristic resistance under tension loads Annex C5

²⁾ The value contains an installation safety factor γ_2 = 1,2

 $^{^{3)}}$ The value contains an installation safety factor $\gamma_{2}\text{=-}1\text{,}0$

⁴⁾ Pullout failure not decisive. Use Equation acc. to ETAG 001, Annex C, for concrete cone failure.

Table 9: Characteristic values for shear loads in case of static and quasi static loading for design design method A acc. CEN/TS 1992-4

					DTD	-ETA1-F	PO	
				М8	M10	M12	M16	M20
Steel failure without lever arm								
Characteristic resistance		$V_{Rk,s}$	[kN]	10	15,5	21	37	54
Factor considering ductility		k ₂	[-]			0,8		
Partial safety factor		γ _{Ms} ¹⁾	[-]			1,25		
Steel failure with lever arm		-	_					
Characteristic bending resistance		$M^0_{Rk,s}$	[Nm]	23	45	77	194	380
Partial safety factor		$\gamma_{Ms}^{1)}$	[-]			1,25		
Concrete pry-out failure								
Factor in equation (16) of CEN/TS 1992	2-4-4, § 6.2.2.3	k ₃	[-]	1	2	2	2	2
Partial safety factor		γ _{Mc} ¹⁾	[-]			1,5		
Concrete edge failure								
Effective length under cheer leading	(h _{ef,min})	$I_{f,min}$	[mm]	40	60	60	80	110
Effective length under shear loading	(h _{ef,max})	I _{f,max}	[mm]	-	ı	80	100	-
Outside diameter of anchor		d _{nom}	[mm]	8	10	12	16	20
Partial safety factor		$\gamma_{Mc}^{1)}$	[-]			1,5		

¹⁾ In absence of other national regulations

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design according to CEN/TS 1992-4	Annex C6
Characteristic resistance under shear loads	

Table 10: Characteristic tension resistance in cracked and non-cracked concrete under fire exposure ¹⁾ for design method A acc. CEN/TS 1992-4

			PTB-ETA1-PRO					
			M8	M10	M12	M16	M20	
Steel failure								
	R30 N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1	4,9	
Characteristic resistance	R60 N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4	3,7	
Characteristic resistance	R90 N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0	3,2	
	R120 N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6	2,5	

Pullout failure (cracked and non-cracked concrete)									
Characteristic resistance in concrete ≥ C20/25									
	R30 N _{Rk,p,fi}	[kN]	1	2,3	3	6,3	5,0		
Minimum embedment depth	R60 N _{Rk,p,fi}	[kN]	1	2,3	3	6,3	5,0		
	R90 $N_{Rk,p,fi}$	[kN]	1	2,3	3	6,3	5,0		
	R120 N _{Rk,p,fi}	[kN]	0,8	1,8	2,4	5	4,0		
	R30 N _{Rk,p,fi}	[kN]	-	-	3	6,3	-		
Maximum embedment depth	R60 N _{Rk,p,fi}	[kN]	-	-	3	6,3	-		
waximum embedment depth	R90 $N_{Rk,p,fi}$	[kN]	-	-	3	6,3	-		
	R120 N _{Rk,p,fi}	[kN]	-	-	2,4	5	-		

Concrete cone and splitting failure ²⁾ (cracked and uncracked concrete)									
Characteristic resistance in concrete ≥ C20/25									
		R30 N ⁰ _{Rk,c,fi}	[kN]	1,8	5	3	10,3	22,8	
Minimum embedment depth		R60 N ⁰ _{Rk,c,fi}	[kN]	1,8	5	3	10,3	22,8	
willimani embeament depth		R90 N ⁰ _{Rk,c,fi}	[kN]	1,8	5	3	10,3	22,8	
		$R120 N_{Rk,c,fi}^{0}$	[kN]	1,5	4	2,4	8,2	18,3	
		$R30 N_{Rk c fi}^{0}$	[kN]	-	-	10,3	18	-	
Maximum ambadmant danth		$R60 N_{Rk c fi}^{0}$	[kN]	-	-	10,3	18	-	
Maximum embedment depth		R90 N ⁰ _{Rk.c.fi}	[kN]	-	-	10,3	18	-	
		R120 N ⁰ _{Rk,c,fi}	[kN]	-	-	8,2	14,4	-	
Characteristic angeing	(h _{ef,min})	S _{cr,N,min,fi}	[mm]	160	240	240	320	440	
Characteristic spacing	(h _{ef,max})	S _{cr,N,max,fi}	[mm]	-	-	320	400	-	
Characteristic adap distance	(h _{ef,min})	C _{cr,N,min,fi}	[mm]	80	120	120	160	220	
Characteristic edge distance	(h _{ef,max})	C _{cr,N,max,fi}	[mm]	-	-	160	200	-	

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.2.

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design according to CEN/TS 1992-4 Characteristic tension resistance under fire exposure	Annex C7

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and $\ge 2 \cdot h_{ef}$.

As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Table 11: Characteristic shear resistance in cracked and non-cracked concrete under fire exposure ¹⁾ for design method A acc. CEN/TS 1992-4

			PTB-ETA1-PRO				
			M8	M10	M12	M16	M20
Steel failure without lever arm							
	R30 V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1	4,9
Characteristic resistance	R60 V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4	3,7
Characteristic resistance	R90 V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0	3,2
	R120 $V_{Rk,s,fi}$	[kN]	0,2	0,5	0,8	1,6	2,5

Steel failure with lever arm		-	-				
Characteristic bending resistance	$R30 M^{0}_{Rk,s,fi}$	[Nm]	0,37	1,1	2,6	6,7	13,0
	$R60 M^{0}_{Rk,s,fi}$	[Nm]	0,34	1,0	2,0	5,0	9,7
	$R90 M^0_{Rk,s,fi}$	[Nm]	0,26	0,7	1,7	4,3	8,4
	$R120 \mathrm{M}^{0}_{\mathrm{Rk,s,fi}}$	[Nm]	0,19	0,6	1,3	3,3	6,5

Concrete pry-out failure									
Factor in equation (16) of CEN TS 1992-4-4, § 6.2	2.2.3	k_3	[-]	1	2	2	2	2	
	R30 V _{Rk,cp,fi}		[kN]	1,8	10	10	20,6	45,6	
Characteristic resistance for $h_{ef,min}$	R60	$V_{Rk,cp,fi}$	[kN]	1,8	10	10	20,6	45,6	
	R90 V _{Rk,cp,fi}		[kN]	1,8	10	10	20,6	45,6	
	R120	$0 V_{Rk,cp,fi}$	[kN]	1,5	8	8	16,5	36,6	
	R30	$V_{Rk,cp,fi}$	[kN]	1	-	20,6	36	-	
Ob anatoriatic registers of the b	R60	$V_{Rk,cp,fi}$	[kN]	1	-	20,6	36	-	
Characteristic resistance for $h_{ef,max}$	R90	$V_{Rk,cp,fi}$	[kN]		-	20,6	36	-	
	R120	0 V _{Rk,cp,fi}	[kN]	-	-	16,5	28,8	-	

Concrete edge failure								
Effective length under cheer lending	(h _{ef,min})	$I_{f,min}$	[mm]	40	60	60	80	110
Effective length under shear loading	(h _{ef,max})	$I_{f,max}$	[mm]	-	-	80	100	-
Outside diameter of anchor		d _{nom}	[mm]	8	10	12	16	20

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.2.

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design according to CEN/TS 1992-4 Characteristic shear resistance under fire exposure	Annex C8

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and $\ge 2 \cdot h_{ef}$.

Table 12: Characteristic values for resistance in case of seismic performance category C1 acc. TR045 "Design of Metal anchor under Seismic Actions"

			PTB-ETA1-PRO						
Anchor sizes			М8	M10	M12	M16	M20		
Tension load									
Steel failure									
Characteristic resistance	$N_{Rk,s,seis}$	[kN]	22	31	43	79	-		
Partial safety factor	γMs,seis	[-]			1,5 ¹⁾				
Pull-out failure $N_{Rk,p,seis} = \Psi_c$	· N ⁰ _{Rk,p,seis}								
Characteristic resistance	$N^0_{Rk,p,seis}$	[kN]	3,5	8,6	11,5	24,3	-		
Partial safety factor	$\gamma_{\text{Mp,seis}}^{ 1)}$	[-]			1,8 ¹⁾				
Shear loads									
Steel failure without lever arr	n								
Characteristic resistance	$V_{Rk,s,seis}$	[kN]	8,5	13,2	16,8	31,5	-		
Partial safety factor	γMs,seis	[-]			1,25 ¹⁾				

The recommended partial safety factors under seismic action ($\gamma_{M,seis}$) are the same as for static loading

POWERS THROUGHBOLT PTB-ETA1-PRO	4 00
Design according to TR045 Characteristic resistance under seismic actions	Annex C9

Table 13: Characteristic values for resistance in case of seismic performance category C2 acc. TR045 "Design of Metal anchor under Seismic Actions"

					PTB-ETA1-PRO						
Anchor sizes			М8	M10	M12	M16	M20				
Tension load											
Steel failure											
Characteristic resistance 2)	$N_{Rk,s,seis}$	[kN]	-	-	43	-	-				
Partial safety factor 3)	γ̃Ms,seis	[-]			1,5						
Pull-out failure $N_{Rk,p,seis} = \Psi_c \cdot N_{Rk,p,seis}^0$											
Characteristic resistance 2)	$N^0_{Rk,p,seis}$	[kN]	-	-	11,5	-	-				
Partial safety factor 3)	$\gamma_{Mp, seis}$	[-]			1,8						
Displacement at DLS 1) 2)	δ _{N,sei (DLS)}	[mm]	-	-	7,0	-	-				
Displacement at ULS 1) 2)	$\delta_{\text{N,sei (ULS)}}$	[mm]	-	-	20,5	-	-				
Shear loads						-					
Steel failure without lever arm	n										
Characteristic resistance 2)	$V_{Rk,s,seis}$	[kN]	-	-	12,0	-	-				
Partial safety factor 3)	γ̃Ms, seis	[-]			1,25						
Displacement at DLS 1) 2)	$\delta_{\text{V,sei (DLS)}}$	[mm]	-	-	5,6	-	-				
Displacement at ULS ^{1) 2)}	$\delta_{\text{V,sei (ULS)}}$	[mm]	-	-	7,4	-	-				

- 1) The listed displacements represent mean values.
- 2) A smaller displacement may be required in the design provisions stated in section "Design of Anchorage", e.g. in the case of displacement sensitive fastenings or "rigid" supports. The characteristic resistance associated with such smaller displacement may be determined by linear interpolation or proportional reduction.
- 3) The recommended partial safety factors under seismic action ($\gamma_{M,seis}$) are the same as for static loading.

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design according to TR045 Characteristic resistance under seismic actions	Annex C10

Table 14: Displacements under tension loading

			PTB-ETA1-PRO						
			M8	M10	М	M12		M16	
			h _{ef}	h _{ef}	h _{ef,min}	h _{ef,max}	$\mathbf{h}_{ef,min}$	h _{ef,max}	h_{ef}
Tension load in non-cracked concrete C20/25 to C50/60 [kN]		6,6	11,8	17,3	22,2	22,2	36,9	30,7	
Displacement	δ_{N0}	[mm]	0,1	0,1	0,2	0,2	0,3	0,6	0,4
	$\delta_{N^{\infty}}$	[mm]	1,2	1,2	1,5	1,5	1,3	1,3	1,2
Tension load in cracked concrete C20/25 to C50/60 [kN]		2,2	7,4	9,8	9,8	15,9	22,1	12,3	
Displacement	δ_{N0}	[mm]	0,4	0,6	0,7	0,7	0,8	1,2	0,5
	$\delta_{N\infty}$	[mm]	1,2	1,2	1,5	1,5	1,3	1,3	1,2

Table 15: Displacements under shear loads

			PTB-ETA1-PRO					
			М8	M10	M12	M16	M20	
Shear load in non-cracked concrete C20/25 [kN]		5,8	8,9	12,4	21,1	25,8		
Displacement	δ_{V0}	[mm]	1,2	2,2	2,2	3,6	3,5	
	δ _V ∞	[mm]	1,8	3,3	3,3	5,4	5,3	

Displacement under shear loading: additional displacements due to through hole in the fixture shall be considered

POWERS THROUGHBOLT PTB-ETA1-PRO	
Design Displacements	Annex C11
Displacements	